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1. Introduction

Let X C IR be a compact interval,
m the (normalized) Lebesgue measure on X
as a reference measure,
f:X—X asmooth map
(not necessary to be invariant).

The purpose of study in dynamical systems is to
Investigate

xEX, fi(x)=foof(x)=>? (n—>x)

The example in mind is the family of quadratic maps
X=[0,1], f(x)=f, (x) =ax(1-x), 0 <a<4.



2. The graph of a quadratic map
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3. Ergodic Theory

The empirical distribution

__(5 O, 40 )2 (n—>c0)

(in other words, the time average

lSnw(X)i B %Eﬁﬂ(f”(x))e? (n — )

n

for an observable ¢ : X—R)



4. Physical measure

to € M, isa physical measure for f if the set of

X E X withd] —— y, (n—=>),
1

l.e. ;Sn(p(x) — [@du, (n—>»), VpEC(X),

has positive Lebesgue measure,
where M, denotes the set of f -invariant

Borel probability measures on X.

The existence of physical measures corresponds to
LLN in probability theory.



5. Typical types of physical measures

¢ U,= (5; where p=f"(p) is an attracting
periodic point.
In this case, f is called regular.

* U, << M i.e.anacip (absolutely continuous
invariant probability measure).

In this case, f is called stochastic.

Lyubich '02

Almost every quadratic map is either regular or
stochastic.




6. Criteria for limit thms of quadratic maps

 Bruin-Shen-van Strien ’03

ceCnt(f), [(/")'(f(e)| = = (n—> »)
= dI acip u,

e Keller-Nowicki ’92, Young '92

(CE) ceECrit(f), linminfllogl(f”)'(f(c))l >0

—> 0 n
=> exponential decay of correlations

= CLT i.e.\/Z(lSncp—fqoduo)AN(O, o’) (n— x) for p EBV,
n

where o’ = f(cp0)2 du, +2Ef(,00 (@, o f")du, €[0,+),
n=1

@ :=§0_f(pdxuo-



7. Local large deviations theorem

 Keller-Nowicki’92

(CE) » For pEBVand 0<e<<l,

Eloc(p(e) = limllogm(| lSﬂq&—fq&duo B 8) <0.



8. Previous result
e C-Takahasi’12,’14

(CE) + the slow recurrence condition

1
lim —log|f™(c) —c| =0

n—,oo 11
o> Vo € C(X), 1, : R — 0, +00] : lower semi-conti.
— inf I,(a) <liminf ! logm (%Sngp S A)

acint A T n—oo N

1 1
glimsup—logm(—sngoeA> < — inf I,(a)
n

n— 00 CLGCIA

for any Borel set A C R.

Indeed, we have obtained LDP of level 2.



9. Uniformly hyperbolic dynamical systems

X:=]0,1], m: Lebesgue measure

The Bernoulli map The tent map

flr)=kz (mod1) f(x)=min{ax,a(l-x)}
(k=2,3,...) (I<a<?2)



10. Nonuniformly hyperbolic
dynamical systems

The Manneville-Pomeau map  The quadratic map

f(x)=x+ X" (modl)  f(x)=ax(1-x)
(s >0) (lI<a=<4)



11. Induced map & LDP

We have obtained a criterion to hold LDP for
non-uniformly hyperbolic dynamical systems
which admit induced Markov maps. It is based
on a slope estimate of the towers given by
induced maps, and it is different from the tail
estimate of Lai-Sang Young.



12. Tail & slope estimates (rough sketch)

e Tail estimate (Young '98) = acip, correlations, CLT

etc. >
ap 1= Z m(R >n) — 0 how fast?

n=k

* Slope estimate (C'11) » LDP, MFA

be :=m(R < k+I|R>k) — 0

how slow for some [ = o(k)?



13. ACIP exists |~ "oretee

BS: bounded slope
SUM: summable

SU'\N CLT: CLT holds
\ Misiurewicz
D)

5<l/ Manneville:
o/
|_-|- Pomeau
Benedicks- — ED: exp. decay
Carleson unif.hyp. SED: super-exp. decay




14. LDP holds NS: nonsteep

BS: bounded slope
SUM: summable
CLT: CLT holds

SUM

Misiurewicz

Manneville

ﬂ“m -1 Pomeau

Benedicks- — ED: exp. decay
Carleson unif.hyp. SED: super exp. decay




15. Question

|s LDP universal in one-dimensional
smooth dynamical systems?

More explicitly, does any stochastic
quadratic map satisfy LDP? Or not?



16. Anhswer

Yes. The class of quadratic maps

satisfying LDP is larger than that of
stochastic ones.

And our result is also applicable to a
class of multimodal maps with non-
flat critical points.



17. Classification of quadratic maps

Jonker-Rand 81
Any S-unimodal map is one of the following 3 types:

1) an attracting periodic orbit exists;
2) Infinitely renormalizable;
3) At most finitely renormalizable.

Remark.

Any stochastic quadratic map is at most finitely
renormalizable, and then topologically exact under
suitable renormalization.



18. Topologically exactness

A continuous map f: X — Xis topologically exact
if
¢p=VJCX:aninterval, dn=1 s.t. f"(J)=X.

Remark.

* top. exact @ specification @ top. mixing.
(no attracting periodic orbit, cl Per () =X,
ergodic measures are entropy-dense in ﬂ\/lf.)

e f:C? with §f <0 and top. exact
> all periodic orbits are hyperbolic repelling.



19. Critical point and non-flatness

 Apoint ¢ € X is acritical point of a
differentiable map /: X = X if f'(c)=0.

* Acritical pointc € X of f is non-flat if
30 > 1,d¢p, v : R — R : diffeos s.t.

d(c) =1 o f(c) =0and [ o f(z)| = |¢(z)]

for all x in a small neighborhood of c.

A continuously differentiable map has at most a
finite number of non-flat critical points.



20. Definition of LDP

We say that f: X — X satisfies the Large deviation
principle (LDP) (of level 2 for Lebesgue measure) if
there exists a lower semi-continuous function

I : M — |0,400]| satisfying the following properties:
1
liminf —logm(d), € G) > — mf I(v),VG C M : open;

n—,o00 N

lim sup — log m(d) € C) < —inf I(v),VC C M : closed,

n—oo T vel

where M denotes the space of Borel probability
measures on X. The function I above is called the
rate function if it exists. The rate fuction must vanish
at a physical measure.



21. Main result

Theorem (C — Rivera-Letelier — Takahasi).

Let /- X — X be atopologically exact C°> map
having only hyperbolic repelling periodic orbits
and non-flat critical points. Then f satisfies LDP,
and the rate function : M — |0, 00| is given by

I(u)= —igfsup{F(v) v € G}, where
F(v) = {h(y) — [log|f'|dv if v € My;

— 00 otherwise,

h(”) denotes the metric entropy, and the
infimum is taken over all the neighborhoods G of

ueM,



22. Remarks

 No assumption on hyperbolicity for critical
orbits is needed in the theorem.

 The function F'is not upper semi-continuous,
so in general I is different from —F
(an example is given after the corollary).



23. Corollary (S-unimodal maps)

Any at most finitely renormalizable S-unimodal map
satisfies LDP under suitable renormalization.

The class of maps for which the corollary is applicable:

@ stochastic i.e. an acip exists;
@ no acip, but a o-finite acim exists (Johnson '87);

@ a wild Cantor attractor exists
(Bruin-Keller-Nowicki-van Strien '96);

@ a physical measure is supported on a hyperbolic
repelling fixed point (Hofbauer-Keller ’90);

@no physical measure & LLN does not hold!
(Hofbauer-Keller ’90)



24. An example that I#-F

In the case @).

Hofbauer-Keller “90 have constructed a
qguadratic map for which the Dirac measure 5p
supported at a repelling fixed point p is physical.
Then

1(6,) =0 but — F(8,) = log|f (p)| > 0.




25. An example that LLN fails

For the example B that the physical measure does
not exist (LLN fails), the rate function seems to
vanish at more than one (and hence uncountable
many) invariant probability measures supported on
the closure of the critical orbit. And almost every
empirical distribution does not converge, but
oscillates between those measures.

On the other hand, the rate function does not vanish
at any invariant probability measure whose support
is isolated from the critical orbit.

“Averaged statistics hold, even for some systems
without average asymptotics.”



26. Idea of the proof

We construct a family of hyperbolic horseshoes
(symbolic dynamics) by using distortion estimates
with topologically exactness to show the theorem.

e Lower bound

Pesin theory
(a version of Katok horseshoe theorem for
non-invertible maps)

 Upper bound (hard)

Variational principle + Uniform scale lemma



27. Uniform scale lemma (key estimate)

Under the assumption of the theorem,
Ve > 0,dn,k,C > 0,ng € N s.t. Vn > ng,
VV C X :an interval with n < |f™(V)| < 29
dW C V :an interval, 4l € N s.t.
W\ >e "V|], n<l<n+ Clogn,
f'lw : W — f1(W) is diffeomorphic

with distortion < e”, | f*(W)| > k.



Thank you for your attention.



