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1.	Introduc2on�
Let		              be	a	compact	interval,	
       m 	the	(normalized)	Lebesgue	measure	on	X 
														as	a	reference	measure,		
        f : X → X   a	smooth	map		
																										(not	necessary	to	be	invariant).	
	
The	purpose	of		study	in	dynamical	systems	is	to	
invesVgate	

	
	
The	example	in	mind		is	the	family	of	quadraVc	maps		
  

         X =[0,1],  f (x) = fa (x) = ax(1-x),  0 < a ≤ 4.	
	
	
 
	
	
	

x ∈ X ,    f n (x) := f ! ⋅ ⋅ ⋅! f (x)→ ?   (n→∞)

X ⇢ R



2.	The	graph	of		a	quadra2c	map�



3.	Ergodic	Theory�

The	empirical	distribu2on	
	
	
(�n	other	words,	the	2me	average	
	
	
for	an	observable		φ : X→R) 

δx
n := 1

n
(δx +δ f (x ) +!+δ

f n−1(x )
)→ ?   (n→∞)

1
n
Snϕ(x) :  =   1

n
ϕ( f i (x))

i=0

n−1

∑ → ?   (n→∞)



4.	Physical	measure�
	µ0	∈		Mf			is	a		physical	measure	for	f  if		the	set	of	
		

																																																						with		
i.e.		
		

has	posiVve	Lebesgue	measure	�	
where	Mf denotes	the	set	of		f		-invariant		
Borel	probability	measures	on	X.						
	
	The	existence	of	physical	measures	corresponds	to	
LLN	in	probability	theory.	
				

δx
n w*⎯ →⎯   µ0  (n→∞) ,x ∈ X

1
n
Snϕ(x) →   ϕ∫  dµ0   (n→∞),  ∀ϕ ∈C(X ),



5.	Typical	types	of	physical	measures	�

•  																		where																					is	an	aFrac2ng			
•  	periodic	point.	
				In	this	case,			f		is	called	regular.		
•  																					i.e.	an	acip	(absolutely	conVnuous		
invariant	probability	measure).	

		�	In	this	case,			f		is	called	�tochas2c.		
	
Lyubich	’02	
Almost	every	quadraVc	map	is	either	regular	or	
stochasVc.	

µ0 = δ p
n p = f n ( p)

µ0 <<m



6.	Criteria	for	limit	thms	of	quadra2c	maps�
•  Bruin-Shen-van	Strien	’03	

	
•  Keller-Nowicki	’92,		Young	’92	
		

	
	
	
	�

c ∈ Crit( f ),   | ( f n ) '( f (c)) |  →  ∞ (n→  ∞)
       ⇒  ∃1 acip	µ0

(CE)%%%%c ∈ Crit( f ),   liminf
n→ ∞

1
n

log | ( f n )'( f (c)) |  > 0  

 ⇒  exponential**decay**of**correlations*

 ⇒  CLT**i.e.* n 1
n
Snϕ − ϕ dµ0∫

'

(
)

*

+
, d- →- N(0,  σ 2 ) (n→∞) for$$ϕ ∈ BV, 

        where  σ 2 := (ϕ0 )2 dµ0 + 2∫ ϕ0 ⋅ (ϕ0 ! f
n )dµ0 ∈ [0,+∞),∫

n=1

∞

∑   

                    ϕ0 :=ϕ − ϕ dµ0∫ .



7.	Local	large	devia2ons	theorem�

•  Keller-Nowicki	’92	
	
(CE)	����For		ϕ ∈ BV and  0 < ε <<1,

∃αϕ (ε) = lim
n→ ∞

1
n

logm | 1
n
Snϕ − ϕ dµ0 |∫ ≥ ε

⎛

⎝
⎜

⎞

⎠
⎟< 0.

        . 



8.	Previous	result�
•  C	-	Takahasi	’12,	’14	
		

		(CE)	+	the	slow	recurrence	condi2on	�	
	
�																																																										lower	semi-conV.									
	
	
	
for	any	Borel	set		
	
Indeed,	we	have	obtained	LDP	of	level	2.�

8' 2 C(X), 9I' : R ! [0,+1] :

 lim sup

n!1

1

n
logm

✓
1

n
Sn' 2 A

◆
 � inf

a2clA
I'(a)

� inf

a2intA
I'(a)  lim inf

n!1

1

n
logm

✓
1

n
Sn' 2 A

◆

A ⇢ R.

lim

n!1

1

n
log |fn

(c)� c| = 0



9.	Uniformly	hyperbolic	dynamical	systems�

The	Bernoulli	map	
		

The	tent	map�
)}1(,min{)( xaaxxf −=
)21( ≤< a

X: =[0,1],     m: Lebesgue	measure�

f(x) = kx (mod 1)

(k = 2, 3, ...)



10.	Nonuniformly	hyperbolic															
						dynamical	systems�

The	Manneville-Pomeau	map� The	quadra2c	map�
sxxxf ++= 1)(

)0( >s
)1(mod )1()( xaxxf −=

)41( ≤< a



11.		Induced	map	&	LDP�

We	have	obtained	a	criterion	to	hold	LDP	for	
non-uniformly	hyperbolic	dynamical	systems	
which	admit	induced	Markov	maps.	It	is	based	
on	a	slope	es2mate	of	the	towers	given	by	
induced	maps,	and	it	is	different	from	the	tail	
esVmate	of	Lai-Sang	Young.	�



12.	Tail	&	slope	es2mates	(rough	sketch)�

•  Tail	esVmate	(Young	’98)	�	acip,	correlaVons,	CLT	
etc.																																																																																																															����		

	
•  Slope	esVmate	(C’11)		�		LDP,	MFA																																																																												

ak :=

1X

n=k

m(R � n) ! 0 how fast?

how slow for some lk = o(k)?

bk := m(R < k + lk|R � k) ! 0



			ED� NS�	BS�

SUM�

CLT�

SED�

NS:	nonsteep	
BS:	bounded	slope	
SUM:	summable	
CLT:	CLT	holds	
�

ED:	exp.	decay	
SED:	super-exp.	decay�

13.	ACIP	exists�

Misiurewicz�

Manneville-
Pomeau�

												
	unif.hyp.�

Benedicks-
Carleson�

2/1<s

1<s 1≥s



			ED� NS�	BS�

SUM�

CLT�

SED�

NS:	nonsteep	
BS:	bounded	slope	
SUM:	summable	
CLT:	CLT	holds	
�

ED:	exp.	decay	
SED:	super	exp.	decay�

14.	LDP	holds�

Misiurewicz�

Manneville-
Pomeau�

												
	unif.hyp.�

Benedicks-
Carleson�

2/1<s

1<s 1≥s



15.	Ques2on�

		

Is	LDP	universal	in	one-dimensional	
smooth	dynamical	systems?		
More	explicitly,	does	any	stochas2c	
quadra2c	map	sa2sfy	LDP?		Or	not?�



16.	Answer�

		

Yes.		The	class	of	quadraVc	maps	
saVsfying	LDP	is	larger	than	that	of	
stochasVc	ones.		
And	our	result	is	also	applicable	to	a	
class	of	mulVmodal	maps	with	non-
flat	criVcal	points.�



17.	Classifica2on	of	quadra2c	maps�

Jonker-Rand	’81		
Any	S-unimodal	map is	one	of	the	following	3	types:	
1)  	an	abracVng	periodic	orbit	exists;	
2)  Infinitely	renormalizable;	
3)  	At	most	finitely	renormalizable.	

Remark.	
Any	stochas2c	quadraVc	map	is	at	most	finitely	
renormalizable,		and	then	topologically	exact	under	
suitable	renormalizaVon.�



18.	Topologically	exactness	�
A	conVnuous	map		f : X → X is		topologically	exact			
if	
 
		

		Remark.	
•  top.	exact		�		specificaVon		�		top.	mixing.	
    (no	abracVng	periodic	orbit,  cl Per ( f )  = X, 
    ergodic	measures	are	entropy-dense	in Mf .) 
•  f : C3  with		Sf		< 0 and	top.	exact	
								�		all	periodic	orbits	�re	hyperbolic	repelling. 

φ ≠∀J ⊂ X :an##interval,###∃n ≥1###s.t.# f n (J ) = X#.



19.	Cri2cal	point	and	non-flatness�
•  A	point		c ∈ X  is	a	cri2cal	point	of	a	
differenVable	map	f : X	�	X   if		f’(c) = 0. 

•  A	criVcal	point	c ∈ X  of		f  is	non-flat	if	
																																																									diffeos	s.t.	
	
						for	all	x in	a	small	neighborhood	of	c.				
	
A	conVnuously	differenVable	map	has	at	most	a	
finite	number	of	non-flat	criVcal	points.		
	

9l > 1, 9�, : R ! R :

�(c) =  � f(c) = 0 and | � f(x)| = |�(x)|l



20.	Defini2on	of	LDP�
							We	say	that		f : X → X saVsfies	the	Large	devia2on	
principle (LDP)	(of	level	2	for	Lebesgue	measure) if	
there	exists	a	lower	semi-conVnuous	funcVon			

																																					saVsfying	the	following	properVes:	
	
�	
	
		

																where	     denotes	the	space	of	Borel	probability	
measures	on		X.	The	funcVon		I		above	is	called	the 
rate	func2on	if	it	exists.	The	rate	fucVon	must	vanish	
at		a	physical	measure.	

lim sup

n!1

1

n
logm(�n

x

2 C)  � inf

⌫2C
I(⌫), 8C ⇢ M : closed,

lim inf

n!1

1

n
logm(�n

x

2 G) � � inf

⌫2G
I(⌫), 8G ⇢ M : open;

I : M ! [0,+1]

M



21.	Main	result�
Theorem	(C	–	Rivera·Letelier	–	Takahasi).	
						Let	�f : X → X  be	a	topologically	exact	�C3	map	
having		only	hyperbolic	repelling	periodic	orbits	
and		non-flat	criVcal	points.	Then		f		saVsfies	LDP,	
and	the	rate	funcVon																																is	given	by	

																																																																			where			
					
	

	
			
														denotes	the	metric	entropy,		and	the	
				infimum	is	taken	over	all	the	neighborhoods	G of		
μ ������.			

		

I(µ) = − inf
G
sup{F(ν ) :ν ∈G},

h(⌫)

I : M ! [0,+1]

M

F (⌫) =

(
h(⌫)�

R
log |f 0|d⌫ if ⌫ 2 Mf ;

�1 otherwise,



22.	Remarks	�
•  No	assump2on	on	hyperbolicity	for	cri2cal	
orbits	is	needed	in	the	theorem.	

•  The	funcVon	F is	not	upper	semi-conVnuous,	
so	in	general		I 	is	different	from	–F															
(an	example	is	given	afer	the	corollary).	

	

	
 



23.	Corollary	(S-unimodal	maps)�
Any	at	most	finitely	renormalizable	S-unimodal	map	
saVsfies	LDP	under	suitable	renormalizaVon.	
		

The	class	of	maps	for	which	the	corollary	is	applicable:			
① 	stochas2c	i.e.	an	acip	exists;	
② 	no	acip,	but	a	σ-finite	acim	exists	(Johnson	’87);	
③ 	a	wild	Cantor	abractor	exists																														

(Bruin-Keller-Nowicki-van	Strien	’96);		
④ 	a	physical	measure	is	supported	on	a	hyperbolic		

repelling	fixed	point	(Hooauer-Keller	’90);	
⑤ no	physical	measure	&	LLN	does	not	hold!												

(Hooauer-Keller	’90)	
	
�



24.	An	example	that		I≠-F 

In	the	case		.	
Hooauer-Keller	’90	have	constructed	a	
quadraVc	map	for	which	the	Dirac	measure								
supported	at	a	repelling	fixed	point	p is	physical.	
Then	
	
�

�p

I(�p) = 0 but � F (�p) = log |f 0
(p)| > 0.



25.	An	example	that	LLN	fails�
For	the	example	
�that	the	physical	measure	does	
not	exist	(LLN	fails),	the	rate	func2on	seems	to	
vanish	at	more	than	one	(and	hence	uncountable	
many)	invariant	probability	measures	supported	on	
the	closure	of	the	criVcal	orbit.		And	almost	every	
empirical	distribu2on	does	not	converge,	but	
oscillates	between	those	measures.		
On	the	other	hand,	the	rate	funcVon	does	not	vanish	
at	any	invariant	probability	measure	whose	support		
is	isolated	from	the	criVcal	orbit.	
“Averaged statistics hold, even for some systems 
without average asymptotics.”    



26.	Idea	of	the	proof�
We	construct	a	family	of	hyperbolic	horseshoes	
(symbolic	dynamics)	by	using	distorVon	esVmates	
with	topologically	exactness	to	show	the	theorem.		
	

•  Lower	bound		
						Pesin	theory		
						(a	version	of	Katok	horseshoe	theorem	for		
							non-inverVble	maps)		
	

•  Upper	bound	(hard)	
						VariaVonal	principle	+	Uniform	scale	lemma	



27.	Uniform	scale	lemma	(key	es2mate)�

Under the assumption of the theorem,

8" > 0, 9⌘,, C > 0, n0 2 N s.t. 8n � n0,

8V ⇢ X : an interval with ⌘  |fn(V )|  2⌘

9W ⇢ V : an interval, 9l 2 N s.t.

|W | � e�"n|V |, n  l  n+ C log n,

	�

f l|W : W ! f l
(W ) is di↵eomorphic

with distortion  e"n, |f l
(W )| � .



Thank	you	for	your	aFen2on.�


